用半导体高分子挑战“涂布型”太阳能电池

用半导体高分子挑战“涂布型”太阳能电池(上)

包括起居室的墙壁、窗帘、摆设,以及汽车、电车在内,人们身边能照射到光线的所有地方都能生产电力——作为实现这一目标的技术,使用有机半导体的有机薄膜太阳能电池备受关注。除了薄、轻、可弯曲等特点,有机薄膜太阳能电池还有可能利用印刷等技术,像印制海报一样制造。

不过,目前有机薄膜太阳能电池的光电转换效率还比较低,能够利用印刷等方式制造的涂布型有机薄膜太阳能电池的转换效率更低。提高转换效率与利用印刷技术制造呈此消彼长的关系,很难兼顾。

然而,面对困难,仍然有研究组向这个难题发起了挑战。日本理化学研究所的创发分子功能研究组就是其中之一。2013年,该研究组开发出了转换效率为8.2%的涂布型有机薄膜太阳能电池。围绕实现涂布型制造并兼顾高转换效率的关键,该研究组的高级研究员尾坂格接受了记者的采访。

——您为何要研究只需涂布就能制作的太阳能电池?

尾坂:我从事这项研究,是因为想要利用有机电子制作出优秀的产品,并希望以有机合成为基础来制造。在我所在的研究组,泷宫和男组长和我从很早以前就在分别研究低分子材料和高分子材料。

其实,涂布型有机薄膜太阳能电池使用的半导体高分子是由为有机晶体管开发的材料派生而来。研究表明,在为有机晶体管开发半导体高分子的过程中发现的化合物衍生物可以用于太阳能电池。

为了实现高性能有机晶体管,结晶性优良的有机半导体必不可少。为了利用聚合物达到这个目的,我们设计了许多不同的分子结构。在研究的过程中,我们发现,在保持优秀的结晶性的同时,还可以控制分子排列的方向(取向)。而且,采用某一种取向时,将其用于有机薄膜太阳能电池可以提高性能。

——怎样的取向适合太阳能电池?

尾坂:就有机晶体管而言,以基板为水平面,载流子沿水平方向移动的速度越快,性能越高。因为在这样的状态下可以提高晶体管的开关速度。换做有机太阳能电池的话,以基板为水平面,载流子沿垂直方向移动的速度越快,性能越高。因为在这样的状态下,受光激发产生的载流子能够快速地移动到基板侧的电极和半导体高分子膜上的电极。

无论是有机晶体管,还是有机薄膜太阳能电池,都是有机半导体膜的结晶性越好,性能就越高。但二者提高载流子移动性(载流子迁移率)的方向却截然不同。半导体高分子的载流子迁移率取决于分子排列的方向(取向),在用于有机晶体管的时候,以基板为水平面,半导体高分子的取向要使载流子迁移率沿水平方向增大,而在用于有机薄膜太阳能电池时,则要沿垂直方向增大。

试制的有机薄膜太阳能电池(摄影:理化学研究所提供)

试制的有机薄膜太阳能电池(摄影:理化学研究所提供)

——涂布型有机太阳能电池使用的是什么样的半导体高分子?性能如何?

尾坂:是在Naphtho-dithiophene与Naphtho-bis-thiadiazole组成的半导体高分子Naphtho-dithiophene中加入了两个烷基的物质。加入烷基后,分子将“横躺”在基板上,载流子迁移率约为0.1cm2/Vs。

与最近发表的有机半导体相比,载流子迁移率看上去比较低,但这是为了使分子的取向适合有机薄膜太阳能电池,牺牲了一些载流子迁移率。另外,如果不加入烷基,载流子迁移率约为0.5cm2/Vs。没有烷基时,分子是竖立在基板上。我们可以通过调整烷基的有无,分别制作适合晶体管和适合太阳能电池的半导体高分子。

使用这种半导体高分子的有机薄膜太阳能电池的转换效率方面,不加入烷基时为5%,而加入烷基后,效率一举提高到了8.2%。这是2013年公开的数值,通过进一步优化,这一数字现在已经提高到了9%以上。

——企业对此有何反响?

尾坂:我们接到了不少关于“能否触摸”等咨询。我们希望自己开发的有机薄膜太阳能电池得到广泛采用,想要得到采用,就必须接受企业的测评,使任何企业在试用时都能获得再现性强的出色性能。我们会做好准备,对外提供自己开发的材料的样品。

——太阳能电池的主流是硅类,有机薄膜太阳能电池的用途有哪些?

尾坂:有机薄膜太阳能电池的特点是呈片状,薄而且能弯曲。按照开发有机薄膜太阳能电池的企业的设想,这种电池将用于现有硅类太阳能电池难以实现的用途,例如设置在墙面和曲面上、做成透明状与窗户融为一体、与卷帘一体化等等。我们研发的有机薄膜太阳能电池也能用于这些用途。

——请介绍一下用于有机晶体管的半导体高分子的开发情况。

尾坂:现在,载流子迁移率超过1cm2/Vs的半导体高分子已经开始出现。与过去的10-3cm2/Vs左右相比,迁移率大大提高。我参与的日本科学技术振兴机构(JST)的研究项目提出的目标,是要稳定实现2~3cm2/Vs的载流子迁移率。该项目瞄准的方向是利用有机晶体管驱动有机EL,这需要2~3cm2/Vs的载流子迁移率。

即使材料的载流子迁移率高,受晶体管制造工艺的影响,制成的晶体管的载流子迁移率也会有所下降。因此,除了调整分子结构等材料方面的开发之外,改进半导体高分子膜与材料接触的界面等努力同样必不可少。

用半导体高分子挑战“涂布型”太阳能电池(下)

要像印制海报一样“印刷”太阳能电池——能实现这一理想的是一种“涂布型”有机薄膜太阳能电池,日本理化学研究所创发分子功能研究组正在进行相关研发。但这种太阳能电池很难提高将光转化成电的转换效率,为解决这一问题,该研究组开发出了能够控制分子排列(配向)的半导体高分子材料。这次,该研究组的高级研究员尾坂格接受采访,介绍了所开发的半导体高分子的特点以及全球有机薄膜太阳能电池开发状况等信息。

——在有机薄膜太阳能电池上使用半导体高分子有什么好处?

试制的有机薄膜太阳能电池(摄影:日本理化学研究所)

试制的有机薄膜太阳能电池(摄影:日本理化学研究所)

尾坂:好处有好几个。首先,因为使用溶液制作涂布型元件很容易,因此能够简化印刷等制造工艺。使用低分子型有机半导体也能制作涂布型元件,但半导体高分子用于涂布型元件更容易。并且,使用半导体高分子制造的有机薄膜太阳能电池的耐热性更高。

而且,使用半导体高分子的话,在有机薄膜太阳能电池内受光激发产生的载流子更容易被电极提取。我们研发的有机薄膜太阳能电池采用的是“体异质结(BulkHeterojunction)”结构,p型半导体采用我们开发的半导体高分子,n型半导体采用富勒烯材料,使二者相互渗透。p型半导体使用的材料分子越大,越容易形成载流子迁移的网络,载流子越不容易被封闭,因此转换效率就越容易提高。

——能够控制半导体高分子配向的现象是偶然发现的吗?

尾坂:我们把用于有机薄膜太阳能电池、使半导体高分子相对于基板横向层叠的排列方法称作“face-on(面朝上)”,而把用于有机晶体管、使半导体高分子纵向铺在基板上的配置方法称作“edge-on(边朝上)”。虽然现在可以分别制作出face-on和edge-on结构,不过最初却经历了多次失败。

我们并没有盲目开发材料。我们在以前用半导体高分子的几种材料进行研究的过程中,发现了“如果这样做的话,配向会变成这样”的现象,从而最终找出了半导体高分子的配向规律。这个规律并不是通过数值计算导出的,而是凭经验找到的。为了做成face-on而引入烷基也是基于经验。

——由Naphtho-dithiophene与Naphtho-bis-thiadiazole组成的半导体高分子在结晶时,分子呈edge-on排列,在该分子内的Naphtho-dithiophene中引入两个烷基,就会变成face-on。为什么会这样呢?

尾坂:结晶性越高的半导体高分子,越容易变成edge-on结构。这是因为,半导体高分子极力排斥与异质的基板接触,而半导体高分子分子之间却有着相互接触的倾向。引入烷基后,会阻碍分子的结晶化运动。

我们认为,在烷基作用下,分子间的相互作用减弱,排斥基板的力也会减弱。适当选择半导体高分子中引入的烷基的位置和密度,可以在不太影响高结晶性的同时改变配向。

用于晶体管的edge-on配向(左)和用于太阳能电池的face-on配向(右) (图摘自理化学研究所的发布资料)

用于晶体管的edge-on配向(左)和用于太阳能电池的face-on配向(右) (图摘自理化学研究所的发布资料)

——有人指出有机薄膜太阳能电池还不是很耐用,您怎么看?

尾坂:我们研发的有机薄膜太阳能电池比以前发布的产品都要出色。因为半导体高分子的结晶性高,有机薄膜太阳能电池的耐用性可通过提高有机半导体的结晶性来提高。耐用性跟结晶性是相关联的,可以通过提高半导体高分子晶体的刚性来降低受热和受光引起的劣化,还可以利用面向有机EL等开发的封装技术。

——全球都在热火朝天地研发有机薄膜太阳能电池,果真如此吗?

尾坂:这个领域确实发展得很快。最近一年,有很多研究小组都发布了转换效率很高的有机薄膜太阳能电池。2013年的时候,转换效率达到8%就可以说是很高了,但现在看来这并不算高。前段时间,我参加了在美国举行的学会“MaterialsResearchSociety”,会议上发布的有机薄膜太阳能电池达到8%转换效率的多得是,还有很多达到了9%。

以前,有了好的成果以后不会很快被其他研究组超越。但现在情况不同了,全球的开发热情都很高,开发速度非常快。

——美国对有机薄膜太阳能电池的期望值高不高?

尾坂:我个人看来,美国对有机薄膜太阳能电池的期望值比以前低了。大概因为页岩气革命使能源供应形势发生了变化。

虽说期望值降低,但研发的脚步并未放缓,反而在加快。据我推测,受页岩气革命影响,“有机薄膜太阳能电池研发费用可能会减少”这样的危机感在相关研发人员中增强,反而促使了研究速度进一步加快。

——您所在的研究组在有机薄膜太阳能电池方面制定了什么样的开发目标?

尾坂:转换效率达到12%是我们的一个目标。为了实现这个目标,希望1年后将现在已超过9%的转换效率提高到10%以上。

最近更新

peliculas1080 peliculas1080 peliculas1080 peliculasenhd peliculasenhd peliculasenhd peliculasubituladas peliculasubituladas peliculasubituladas peliculaslatino1link peliculaslatino1link peliculaslatino1link peliculas-gratis.info terapeliculas.com peliculaslatino.co peliculas5.tv peliculas4online.tv